
Computing in the
national curriculum
A guide for primary teachers

COMPUTING AT SCHOOL
E D U C AT E • E N G A G E • E N C O U R A G E
In collaboration with BCS, The Chartered Institute for IT

Computing in the
national curriculum
A guide for primary teachers

2

Every effort has been made to trace copyright holders and obtain their permission for
the use of copyright materials. The authors and publisher will gladly receive information
enabling them to rectify any error or omission in subsequent editions.
All facts are correct at the time of going to press. All referenced websites were correct at the
time this book went to press.

Text © Computing at School.
Published 2013.

Author: Miles Berry.
Consultants: Amanda Jackson, Penny Patterson and Dave Smith of Havering School
Improvement Services.
Text design, Typesetting and Cover Design: Burville-Riley Partnership.
Photography: Ron Coello.

Computing at School are grateful to the following contributors: Phil Bagge, Andrea Carr, Emma
Davis, Graham Hastings, Lance G. Howarth, Simon Humphreys, Chris Mairs, Joe McCrossan, Simon
Peyton-Jones. Thanks to the children and teachers of Ringwood Infants School and Ringwood
Junior School, Ringwood, Abbotswood Junior School, Totton and Gordonbrock Primary School,
Lewisham.

We would like to acknowledge and thank ARM Holdings and Raspberry Pi Foundation for their
kind financial support without which the production of this guide would not have been possible.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License.

British Library Cataloguing in Publication Data.
A CIP record for this book is available from the British Library.

ISBN: 978-1-78339-143-1

Printed by Newnorth Print, Ltd. Bedford.

Computers are now part of everyday life. For most
of us, technology is essential to our lives, at home
and at work. ‘Computational thinking’ is a skill
children must be taught if they are to be ready for
the workplace and able to participate effectively in
this digital world.

The new national curriculum for computing has
been developed to equip young people in England
with the foundational skills, knowledge and
understanding of computing they will need for the
rest of their lives. Through the new programme
of study for computing, they will learn how
computers and computer systems work, they will
design and build programs, develop their ideas
using technology and create a range of content.
But what does this mean for primary schools?
How should school leaders be planning for the
new curriculum and how can teachers develop the
additional skills they will need?

The programme of study is expressed in precise
but perhaps unfamiliar language. This guide has
been written especially for primary teachers, to
demystify the programme of study for primary
schools. It will enable teachers to get to grips
with the new requirements quickly and to build
on current practice. It includes help for schools
with planning and gives guidance on how best to
develop teachers’ skills.

The new national curriculum for computing
provides schools with an exciting opportunity
to reinvigorate teaching and learning in this
important area of the curriculum. We hope this
guide will help you on your way.

To find out more about Computing At School,
please visit us at
www.computingatschool.org.uk/primary

You will also find an eBook version of this guide
there, which can be freely shared with colleagues.

Simon Peyton-Jones
Chairman, Computing At School

Foreword

Contents
Introduction 4
Getting started 5
Subject knowledge 7
 Key stage 1 7
 Key stage 2 10
Planning 14
 Starting with the programme of study 15
 Starting with projects 16
 Using a pre-written scheme of work 16
 Using a pupil-centred approach 16
Resourcing 17
Teaching 18
 Technologically enhanced learning 20
 Inclusion 20
 Gifted and talented pupils 21
 Informal learning 21
Assessment 22
 Formative assessment 22
 Summative assessment 23
Concluding remarks 26
Glossary 27
Resources 28
 Background 28
 Subject knowledge 28
 Teaching resources and ideas 29
 Media 29
Support 30
Background 31

4

Introduction

1Adapted from A Curriculum Framework for Computer Science and Information Technology:
www.computingatschool.org.uk/data/uploads/Curriculum%20Framework%20for%20CS%20and%20IT.pdf

INTRODUCTION

4

The 2014 national curriculum introduces a new
subject, computing, which replaces ICT. This
represents continuity and change, challenge
and opportunity. It gives schools the chance to
review and enhance current approaches in order
to provide an even more exciting and rigorous
curriculum that addresses the challenges and
opportunities offered by the technologically rich
world in which we live.

Computing is concerned with how computers
and computer systems work, and how they are
designed and programmed. Pupils studying
computing will gain an understanding of
computational systems of all kinds, whether
or not they include computers. Computational
thinking provides insights into many areas of the
curriculum, and influences work at the cutting
edge of a wide range of disciplines.

Why is computational thinking so important? It
allows us to solve problems, design systems, and
understand the power and limits of human and
machine intelligence. It is a skill that empowers,
and one that all pupils should be aware of and
develop competence in. Pupils who can think
computationally are better able to conceptualise,
understand and use computer-based technology,
and so are better prepared for today’s world and
the future.

Computing is a practical subject, in which
invention and resourcefulness are encouraged.
The ideas of computing are applied to
understanding real-world systems and creating
purposeful products. This combination of
principles, practice and invention makes
computing an extraordinarily useful and intensely
creative subject, suffused with excitement, both
visceral (‘it works!’) and intellectual (‘that is so
beautiful’).1

The focus of the new programme of study
undeniably moves towards programming and
other aspects of computer science. Programming
has been part of the primary national curriculum
right from the start, as ‘control’ or ‘sequencing
instructions’, although this has too often been
overlooked or treated superficially.

There is more to computer science than
programming, though. It incorporates techniques
and methods for solving problems and advancing
knowledge, and includes a distinct way of
thinking and working that sets it apart from other
disciplines. Every core principle can be taught or
illustrated without relying on the use of a specific
technology.

The role of programming in computer science
is similar to that of practical work in the other
sciences – it provides motivation, and a context
within which ideas are brought to life.

Information technology deals with applying
computer systems to solve real-world problems.
Things that have long been part of ICT in schools,
such as finding things out, exchanging and sharing
information, and reviewing, modifying and
evaluating work, remain as important now, for
a broad and balanced technological education,
as they ever were. The new programme of study
provides ample scope for pupils to develop
understanding, knowledge and skills in these
areas, as you’ll see from some of the examples in
this guide.

Primary teachers currently equip pupils with high-
level skills in using ICT, preparing them to apply
these across the curriculum in secondary education.
It’s unclear whether pupils leave primary school
with much knowledge of how computers, software,
the internet, the web and search engines work,
or a critical understanding of the impact of these
technologies on their lives and on society.

As teachers, we are competent and confident
users of technology in our own personal and
professional lives, and yet relatively few of us are
sure how the software running on our computers
works, what the difference is between the web
and the internet, or how search results are
ordered, and we’re even less sure of how to teach
these things to our pupils. However, with help
from the web, new publications and resources,
and colleagues (and pupils!) willing to support us,
it is time to give it a go.

Note: throughout the guide we have highlighted
computing terms in orange. The definitions of
these terms are in the glossary on page 27.

www.computingatschool.org.uk/data/uploads/Curriculum%20Framework%20for%20CS%20and%20IT.pdf

5

One way of thinking about these aspects is as
the foundations, applications and implications of
computing. The aims for the subject as a whole
reflect this distinction.

[All pupils] can understand and apply the
fundamental principles and concepts of computer
science, including abstraction, logic, algorithms
and data representation. (CS)

[All pupils] can analyse problems in computational
terms, and have repeated practical experience of
writing computer programs in order to solve such
problems. (CS)

[All pupils] can evaluate and apply information
technology, including new or unfamiliar
technologies, analytically to solve problems. (IT)

[All pupils] are responsible, competent,
confident and creative users of information and
communication technology. (DL)

It’s worth noting that computer science aims to
cover two distinct, but related, aspects. There’s
a focus on computer science itself (the ideas and
principles that underpin how digital technology
works) but this sits alongside the practical
experience of programming, almost certainly
the best way for primary pupils to learn about
computer science.

Your school has a statutory duty to offer a broad
and balanced curriculum that prepares pupils
to ‘use computational thinking and creativity to
understand and change the world’.3 Therefore,
as your school develops its scheme of work for
computing, it would be unwise to ignore any of
these aspects, or to give too much emphasis to
one to the detriment of the others.

That said, you have the freedom to decide how
much time you spend on any aspect of the
programme of study, and there’s no implication
that the number of bullet points or words should
be proportional to the time spent on any aspect,
as long as pupils have been taught all the content
by the end of the key stage.

2 and 3 See www.gov.uk/government/publications/national-
curriculum-in-england-computing-programmes-of-study/
national-curriculum-in-england-computing-programmes-of-
study

GETTING STARTED

Getting started

As with other subjects in the new national
curriculum, the programme of study document
for computing2 begins with a brief introduction.
It presents the subject as one lens through which
pupils can understand the world. There is a focus
on computational thinking and creativity, as well
as opportunities for creative work in programming
and digital media.

The introduction also makes clear the three
aspects of the computing curriculum: computer
science (CS), information technology (IT) and
digital literacy (DL).

The core of computing is computer science,
in which pupils are taught the principles of
information and computation, how digital systems
work and how to put this knowledge to use
through programming. Building on this knowledge
and understanding, pupils are equipped to use
information technology to create programs ,
systems and a range of content. Computing also
ensures that pupils become digitally literate – able
to use, and express themselves and develop their
ideas through, information and communication
technology – at a level suitable for the future
workplace and as active participants in a digital
world.

http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

6

We will look in more detail at the programme
of study, but a quick scan of the subject content
shows expectations for the three aspects of
computing at each key stage. The content has
been adapted below to show how it can be broken
down into three sub-sections.

KS1 KS2

CS

Understand what algorithms are; how
they are implemented as programs on
digital devices; and that programs execute
by following precise and unambiguous
instructions

Create and debug simple programs

Use logical reasoning to predict the
behaviour of simple programs

Design, write and debug programs that accomplish specific goals,
including controlling or simulating physical systems; solve problems
by decomposing them into smaller parts

Use sequence, selection, and repetition in programs; work with
variables and various forms of input and output

Use logical reasoning to explain how some simple algorithms work and
to detect and correct errors in algorithms and programs

Understand computer networks including the internet; how they can
provide multiple services, such as the World Wide Web

Appreciate how [search] results are selected and ranked

IT

Use technology purposefully to create,
organise, store, manipulate and retrieve
digital content

Use search technologies effectively

Select, use and combine a variety of software (including internet
services) on a range of digital devices to design and create a range of
programs, systems and content that accomplish given goals, including
collecting, analysing, evaluating and presenting data and information

DL

Recognise common uses of information
technology beyond school

Use technology safely and respectfully,
keeping personal information private;
identify where to go for help and support
when they have concerns about content
or contact on the internet or other online
technologies

Understand the opportunities [networks] offer for communication and
collaboration

Be discerning in evaluating digital content

Use technology safely, respectfully and responsibly; recognise
acceptable/unacceptable behaviour; identify a range of ways to report
concerns about content and contact

GETTING STARTED

It should be noted that the statutory requirements
are not labelled under these three headings in the
programme of study, and the distinction between
information technology and digital literacy is open
to some interpretation. The important thing is to
cover the content in a balanced, stimulating and
creative way rather than being overly concerned
about the specifics of terminology.

There are big changes in assessment, too, as
with other subjects of the national curriculum.
The old system of levels will be abolished and
is not being replaced. How your school chooses
to assess, record and report pupils’ mastery
of the curriculum content is your decision, but
we explore some possible approaches in the
Assessment section.

7

SUBJECT KNOWLEDGE

7

There are many different programming languages.
They each have their own vocabulary, grammar
and features that make them appropriate for
particular tasks. The current favourites in primary
schools are Scratch, Logo and Kodu.

Programs are made up of statements in a limited,
but precisely understood, vocabulary. Each
statement in the program has one particular
meaning. The computer follows the instructions
given: nothing more and, almost always, nothing
less.

A ‘computer’ is not just a traditional desktop or
laptop PC; it is any device that accepts input,
processes it according to a stored program, and
produces an output. The input, stored program
and output are all encoded as numbers, making
these devices ‘digital’. Digital devices include the
controller in your car or microwave oven, your
mobile phone, tablet, laptop and desktop, as well
as high-end supercomputers and ‘virtual’ servers
in the ‘cloud’.

Create and debug simple programs

The best way for pupils to learn what an algorithm
is, and how it can be implemented as a program, is
to write some programs themselves. Programming
involves taking an idea for doing something and
turning it into instructions the computer can
understand. In the infant classroom this could be
writing a set of commands for a Bee-Bot, Pro-
Bot or Roamer, or snapping on-screen program
building blocks together in Scratch.

When you write a program you need to have a
clear idea of what it will do and how it should do
it. This is where algorithms come in, and thinking
algorithmically is an integral part of the craft of
programming.

Most programs don’t work as they should first
time round; professional programmers have this
experience all the time! One of the most rewarding
aspects of programming is finding and fixing these
mistakes. Mistakes in programs are called ‘bugs’,
and finding and fixing them is ‘debugging’.

The process of debugging often involves identifying
that there is a fault, working out which bit of the
program (or underlying algorithm) has caused the
problem, and then thinking logically about how
to fix it. In the classroom, this can provide a great
opportunity for collaborative work.

Subject
knowledge

The statements in the programme of study are
brief. Let’s take a slightly more detailed look at the
concepts each statement refers to.

Key stage 1

Understand what algorithms are; how
they are implemented as programs on
digital devices; and that programs execute
by following precise and unambiguous
instructions

An algorithm is a precisely defined procedure –
a sequence of instructions, or a set of rules, for
performing a specific task (e.g. instructions for
changing a wheel or making a sandwich). While
all correct algorithms should produce the right
answer, some algorithms are more efficient than
others. Computer scientists are interested in
finding better algorithms, partly out of intellectual
curiosity, and partly because improvements in
algorithms can result in massive savings in terms
of both cost and time.

Computer programs, like algorithms, are
comprised of sets of rules or instructions, but
they differ in that they need to be written in a
precise language a computer can ‘understand’.
A computer’s central processor understands a
very limited set of simple instructions written in
machine code. Very few programmers work at
this level, so computer scientists have developed
programming languages, which sit somewhere
between the ideas in the algorithm and the
computer’s machine code.

A programmer can turn an algorithm into code
using a programming language that has

enough in common with the English
language to make it easy to

read, remember and write. The
programming language takes
care of the minute details, like
how to do multiplication or
where data should be stored
in the computer’s memory,

which means the programmer
can focus on the big picture.

8

SUBJECT KNOWLEDGE

As a teacher, you should identify clear steps that
pupils can follow so that they can fix their code.
These might involve identifying what the fault is,
finding out which part of the code is creating the
problem, and then working towards a fix.

Pupils should be encouraged to work together
to identify bugs, as programmers are often
blind to their own mistakes. Although it might
be appropriate to help pupils compare code
or identify which section to look at, it is rarely
helpful for you to fix a bug for pupils until they
have worked through the stages of debugging
themselves. Debugging code develops valuable
learning skills that are transferable right across the
curriculum, such as independence, resilience and
persistence.

Use logical reasoning to predict the behaviour
of simple programs

Computers are deterministic machines. We
can predict exactly how they’ll behave through
repeated experience or by developing an internal
model of how a piece of software works. Stepping
through the program can give a clear sense of
what it does, and how it does it, giving a feel for
the algorithm that’s been implemented.

In the classroom, getting one pupil to role-play
a floor turtle or screen sprite while another
steps through the program can give a far more
immediate sense of what’s going on. When
working with a computer, encourage pupils to
make a prediction about what the program will do
before they press return or click the button, and
to explain their prediction logically; this is part of
computer science.

Logical reasoning also implies that pupils are
following a set of rules when making predictions.
Pupils who step outside the boundaries of these
rules are not using logical reasoning. A pupil who
expects a roamer to jump doesn’t understand
the constraints of its programming language or
hardware.

Use technology purposefully to create,
organise, store, manipulate and retrieve
digital content

Creating digital content has many practical
possibilities. These include commonplace tasks
such as word-processing, creating pictures using
paint packages, working with digital photographs

and video (including animations), writing computer
programs, and creating online content such as blog
posts, forum contributions, wiki entries and social
network updates. This creative work is digitised
(i.e. converted to numbers) once it’s on the
computer.

The sheer quantity of digital information makes
the skill of organising digital content more
important than ever. In more practical terms, we
might think of how to bring together different
digital media, how to order a series of paragraphs,
how to organise the files in our documents
directory, or how to tag photos and posts online.

Storing digital content is perhaps something we
take for granted. Knowing where a file is saved in
the directory structure is important. It’s vital to
be able to distinguish between the hard disk (or
solid state storage) inside the computer itself, the
school’s network server, USB disks or memory
cards, and online storage via the internet.

Content is stored digitally. Size is measured in
bytes, one byte being the amount of information
needed to encode a single character of text. A
kilobyte (kB) is 1000 bytes, 1000 kB is a megabyte
(MB), 1000 MB is a gigabyte (GB) and 1000 GB is
one terabyte (TB). The list continues beyond that.
A short word-processed document might be
25 kB, a digital photo 5 MB, a feature-length, high-
definition film 4 GB and the data on a computer
hard drive 1 TB.

Manipulating digital content is likely to involve
using one or more application programs, such
as word-processors, presentation software, or
image-, audio- or video-editing packages. The
pupil makes changes to the digital content,
which might include combining content from
multiple sources. The skill here is not just using
the software tools, but also knowing how best to
change the content for the audience and purpose,
and to take into account principles of good design.

Retrieving digital content could be seen as the
reverse of storing: the skills of opening and saving
documents are similar. Retrieving content requires
you to know what you called the file, what file
type it is, and where you stored it.

Finding files can be time-consuming, especially
when the filing system is not well organised.
Computer filing systems have search features
to make this easier, but are reliant on the user

9

Use technology safely and respectfully,
keeping personal information private; identify
where to go for help and support when they
have concerns about content or contact on
the internet or other online technologies

This statement covers the key principles of pupils’
e-safety. Pupils should be aware of the main risks
associated with the internet, and recognise that
they should not share certain types of personal
information online.

Young children have little awareness of who
can access online information, so it is best to
teach them not to communicate any personal
information online. Pupils should develop their
sensitivity to others online, treating them with
respect, and showing respect for their privacy.

Pupils should have an age-appropriate
understanding of their responsibilities under the
school’s acceptable use policy. As pupils may
inadvertently access inappropriate content on the
web, they need to know how to report a worry,
and they should be encouraged to talk to teachers
or parents about their concerns.

Adults worry about extreme content, but pupils’
worries are often at a lower level, related to
material they consider unfair or unkind. In order
for pupils to feel supported, it is important
that adults empathise with, and address, these
worries, and there should normally be no blame
attached to a pupil reporting such concerns.

Pupils must have a clear understanding of what
to do if they have concerns about inappropriate
online behaviour (such as unwelcome contact
or cyberbullying). Telling a teacher or parent
should normally be the first response, but pupils
should also know that they can talk directly and
confidentially to Childline about such matters.

You must follow your school’s child protection
policy, and your child protection lead must be
informed about any potential abuse, whether
online or offline. This may include informing the
Child Exploitation and Online Protection Centre
(CEOP).4 Further information for teachers on
e-safety is available on CEOP’s Thinkuknow5 site.

remembering enough about the file to be able to
search for it. The problem of finding a particular file
is harder on the web, although the links between
web pages help, and these are at the centre of
Google’s algorithm for ranking search results.

Recognise common uses of information
technology beyond school

Digital technology is a part of all our lives, with
almost no sphere untouched by it. A key stage 1
pupil might be woken by a digital alarm clock,
have a bowl of microwaved porridge for breakfast,
and then watch digital TV or play an iPad game
before travelling to school, their journey guided or
tracked via GPS.

While they’re at school, their attendance, progress
and lunch are tracked through the management
information system, they engage in activities on
tablets, and research things on the web. Their
parents use digital technology at work, perhaps
using computerised control and monitoring
equipment in manufacturing, productivity suites
in an office, or high-end digital tools in creative
industries.

The ingredients for the evening meal may have
been ordered online, or a parent may have
scanned them at the supermarket, whose supply
chain is controlled by smart systems. Evening
entertainment might be computer gaming with a
Wii or Kinect. Parents and older siblings socialise
on smartphones or laptops, and the book at
bedtime might be read on an e-book reader.

There are many opportunities for pupils to
consider the applications of algorithms, programs
and systems.

4See www.ceop.police.uk
5See www.thinkuknow.co.uk/teachers/

SUBJECT KNOWLEDGE

http://www.ceop.police.uk
http://www.thinkuknow.co.uk/teachers/

10

Key stage 2

Design, write and debug programs that
accomplish specific goals, including controlling
or simulating physical systems; solve problems
by decomposing them into smaller parts

The focus on algorithms at key stage 1 leads pupils
into the design stage of programming at key stage 2.
Algorithms are the necessary start of the process
of creating working code, and identifying the steps
needed to solve any problem is essential.

Splitting problems into smaller parts is part of
computational thinking. For example, designing
a game in Scratch will involve thinking about
algorithms, programming, drawing sprites and
backgrounds, making animations, and even
composing music or recording sound effects.

We think of computers as boxes with keyboards,
mice and displays, but built-in computers (or
‘embedded control systems’) are an increasingly
significant application of information technology.
Pupils can gain valuable insights into how
computers are used to monitor and control real-
world systems by using sensors, switches, motors
and lights. Computers also make it possible to
explore real-world situations that would be too
difficult, too expensive or too dangerous to create
in real life.

SUBJECT KNOWLEDGE

Use sequence, selection, and repetition in
programs; work with variables and various
forms of input and output

Sequence in this context is the step-by-step
nature of computer programs, mirroring the
sequence of steps the algorithm would list.

Selection refers to instructions such as if ... then ...
otherwise decisions in which the operation (what
the program does) depends on whether or not
certain conditions are met. For example, a quiz
provides different feedback if the player answers
the question correctly or incorrectly. It is helpful
to refer pupils to selections (choices) they make
in everyday life; for example, if it rains in the
morning, then I will wear my anorak to school,
otherwise I won’t.

Repetition is a programming structure such as a
repeat ... until loop in which the computer runs
part of the program a certain number of times or
until a particular condition is met.

In the case of the quiz, we might want to ask
ten questions, or keep going until the player has
scored five correct answers. Again, it is useful to
refer pupils to loops or repetition in daily routines.
For example, the traffic lights on a pelican crossing
will stay green until someone presses the button
to cross the road; an oven heats up until it reaches
the right temperature. There are many loops in
the wider world, such as the days of the week or
the moon travelling around the Earth.

11

Variables are used to keep track of the things that
can change while a program is running. They are a
bit like x or y in algebra, in that the values may not
initially be known. Variables are not just used for
numbers. They can also hold text, including whole
sentences (‘strings’), or the logical values ‘true’
or ‘false’. For our quiz we would use variables to
keep track of the player’s score and the number
of questions they attempt. Variables are like
boxes, in that the computer can use them to store
information that can be changed by the user, the
program or by another variable.

We may think of input as keyboard and mouse
(or touch screen), and output as the computer
display, but pupils’ experiences should be
widened beyond this. Working with sound
is straightforward, as laptops have built-in
microphones and speakers. The latest version
of Scratch provides support for using webcams.
Digital cameras allow interesting work using
image files.

The reference in the programme of study to
‘controlling physical systems’ implies the use
of sensors, motors and perhaps robotics. Midi
instruments like an electronic keyboard, and
devices such as MaKey MaKey6 and Microsoft
Kinect provide yet further experience of working
with various forms of input.

Use logical reasoning to explain how some
simple algorithms work and to detect and
correct errors in algorithms and programs

Key stage 2 pupils should be able to explain the
thinking behind their algorithms, talking through
the steps and explaining why they’ve solved a
problem the way they have. They also need to
be able to look at a simple programming project
and explain what’s going on. This is made easier
with languages like Scratch, Kodu and Logo,
which feature an on-screen sprite or turtle. The
immediate feedback helps pupils to understand
and debug their programs. Pupils might also be
expected to look at someone else’s algorithm and
explain how it does what it does.

Thinking through programs and algorithms helps
develop pupils’ abilities to think logically and
algorithmically, which leads to planned debugging
of code rather than just a trial-and-error approach.

Understand computer networks, including
the internet; how they can provide
multiple services, such as the World Wide
Web, and the opportunities they offer for
communication and collaboration

This is a challenge because most of us have
not thought about how these ever-present
technologies do what they do.

Computer networks, including the internet, are
made up of computers connected together. The
computers include fast, dedicated machines
that pass on data that’s not intended for them
(called ‘routers’, ‘gateways’, ‘hubs’ or ‘switches’,
depending on particular roles), and ‘servers’
(always-on machines looking after emails, web
pages and files that other computers might ask for
from time to time). The connections between the
computers in a network may consist of radio or
satellite signals, copper wires or fibre-optic cables.

Information stored on computers and information
travelling over networks must be digitised
(i.e. represented as numerical data). The computer
network in your school and the internet use the
same method or ‘protocol’ to send and receive
this data. The data is broken up into small
‘packets’, each with identifying information, which
includes the IP (internet protocol) address of the
sender and recipient.

These packets of information make their way across
the internet from source to recipient. At the far
end, the packets get stitched back together in the
right order and the email is delivered, the website
is accessed, or the Skype call gets connected. Many
of these packets, travelling at near light-speed, are
generated by web servers returning web pages to
the browser requesting them.

By connecting people around the world and
passing on packets of data from sender to
recipient, the internet has created many
opportunities. These range from communication
(such as email, video conferencing, blogs, forums,
social networks) and collaboration, such as wikis
(including Wikipedia), to real-time collaborative
editing, Creative Commons media (permission
to share and use creative work with conditions
stated by the creator) and open-source software,
which is available for us to use and change.

6See www.makeymakey.com

SUBJECT KNOWLEDGE

http://www.makeymakey.com

12

Use search technologies effectively,
appreciate how results are selected and
ranked, and be discerning in evaluating
digital content

Using search technologies involves aspects of
computer science, information technology and
digital literacy. Effective use of search engines
gets the results you want. It relies on specifying
the right keyword, skimming and scanning the
results to see which seems most relevant, and
distinguishing between the main results and
adverts presented as sponsored results. It may
also involve using other features7 of the search
engine, including searching for phrases rather than
keywords, or limiting searches to a particular time
frame, language, reading level or website.

In order to return results, search engines use
‘web crawler’ programs. These programs visit the
pages of the web, follow the links they find and
can make a copy of each page visited. The pages
are indexed, keeping track of keywords on each
page. When you enter a search query, the search
engine returns pages from its index on which your
keyword(s) or phrase appears.

Search engines take many factors into account.
At the heart of Google’s algorithms8 is ‘PageRank’,
which determines the quality and rank of a page
based on the quality of the pages that link to it.
Their quality is, in turn, determined by the quality
of the pages that link to them, and so on.

Just because a page has a high rank in Google
or another search engine for a particular query,
it doesn’t mean that the content is true, age-
appropriate or relevant to a particular project.
Pupils need to develop skills in evaluating
digital content, including how trustworthy the
information is (perhaps by verifying it with
another independent source), whether it’s
something that the audience for a project would
be able to grasp, and why the content was posted
in the first place (e.g. to give a balanced overview,
or simply to advance one side of an argument).

Select, use and combine a variety of software
(including internet services) on a range of
digital devices to design and create a range
of programs, systems and content that
accomplish given goals, including collecting,
analysing, evaluating and presenting data
and information

This is something of a catch-all requirement,
bringing together various aspects of the
computing curriculum. Pupils might typically be
expected to demonstrate progression by:

• using software under the control of the teacher
• then, using software with increasing

independence
• then, combining software (e.g. importing an

edited image or video into a presentation or
web page)

• then, selecting software themselves (perhaps
from the full range of applications installed on
computers, smartphones and tablets at home
or at school, or available to them via the web).

Internet services might include, for example,
learning platforms, school, class or individual
blogs, and cloud-based tools such as Google Drive,
Office 365 or image-editing sites.

The reference to ‘a range of digital devices’
encompasses using both fixed and mobile
technologies. It also includes running software
(such as that described in the previous paragraph)
on web servers via the internet.

There is also recognition that design and creativity
in computing encompass many forms, from
the content familiar to many from the old ICT
programme of study, the programming as required
by earlier statements in the new programme
of study, to more complex, system-level ideas,
combining software and hardware to achieve a well-
defined goal with a particular audience in mind.

There is an important distinction between data
and information at GCSE and A level, where
information is defined as structured data that
has been processed and has meaning attached
to it. At key stage 2 it might be more helpful to
think of data as numbers and information as
richer media such as text, images, audio, and
video or 3D representations. However, it is worth
remembering that both data and information are
digitised by computers (i.e. stored in the form of
numbers).

7See, for example, www.google.com/advanced_search
8There’s an overview of some of Google’s algorithms at
www.google.co.uk/intl/en/insidesearch/howsearchworks/
algorithms.html

SUBJECT KNOWLEDGE

http://www.google.com/advanced_search
http://www.google.co.uk/intl/en/insidesearch/howsearchworks/algorithms.html
http://www.google.co.uk/intl/en/insidesearch/howsearchworks/algorithms.html

13

Collecting, analysing, evaluating and presenting
data is an important application of computers.
Pupils should gain experience of working with data
they have generated or collected for themselves,
as well as big, public datasets.9

Pupils have an opportunity to develop a more
critical media literacy as they work with tools
that, until relatively recently, were the domain
of professionals. Tools for recording audio and
video, and for creating animation, web pages,
digital photos, digital music and 3D models, are all
available to primary schools for low (often zero)
cost. Providing a potentially global audience for
the pupils’ work is tremendously motivating.

Use technology safely, respectfully and
responsibly; recognise acceptable/
unacceptable behaviour; identify a range of
ways to report concerns about content and
contact

Safe and responsible use of technology at key
stage 2 builds on skills learned in key stage 1. As
well as requiring pupils to keep themselves safe
and to treat others with respect, the programme
of study at key stage 2 introduces an emphasis on
responsible use of technology.

Pupils need to consider how their online actions
impact other people. They need to be aware

of their legal and ethical responsibilities, such
as showing respect for intellectual property
rights (e.g. musical, literary and artistic works),
keeping passwords and personal data secure,
and observing the terms and conditions for web
services they use (such as the 13+ age restriction
on most US websites, including Facebook,
resulting from COPPA10 legislation).

Pupils should also develop some awareness of
their digital footprint: the data automatically
generated when they use the internet and other
communication services, and how this is, or could
be, used.

Pupils should be aware of, and abide by, the
school’s acceptable use policy, as well as the
requirements of any other services they use.
Encourage pupils to think twice, and to check
terms and conditions, before signing up for
internet-based services.

As in key stage 1, pupils should report any
concerns to a parent or teacher. They should also
be aware that they can talk directly to the police,
report their concern to CEOP, or talk in confidence
to counsellors at Childline. Your designated child
protection lead might, depending on the nature
of the concern, raise the matter with local social
services, the police or CEOP.

9See http://data.gov.uk/ and www.theguardian.com/news/
datablog/interactive/2013/jan/14/all-our-datasets-index
10The Children’s Online Privacy Protection Act, which prohibits
companies in the United States from storing any information on
under 13s: see www.coppa.org/coppa.htm

SUBJECT KNOWLEDGE

http://data.gov.uk/
http://www.theguardian.com/news/datablog/interactive/2013/jan/14/all-our-datasets-index
http://www.theguardian.com/news/datablog/interactive/2013/jan/14/all-our-datasets-index
http://www.coppa.org/coppa.htm

14

Planning

How can we turn the requirements of the
programme of study into engaging lessons?

Here are four things to keep in mind.
• The programme of study is a minimum

entitlement – there’s nothing that imposes any
limits on what schools, teachers or pupils can
cover in computing.

• The programme of study is not a scheme of
work – it’s up to you, as a school, to determine
how you cover this content, in what order, in
what contexts and with what resources.

• Schemes of work are not lesson plans – that
level of planning comes later, with the ideas for
each unit of work getting translated into the
detail of specific objectives, resources, activities
and assessment.

• There is a far greater focus now on learning
about computers and computation, not simply
learning how to use technology.

The opportunity to do something really creative
is there for the taking. A number of strategic
decisions need to be made before work can
properly begin on developing a scheme of work
for computing, and it would be wise to consult
with stakeholders and potential partners before
committing to any one path. You’ll need to
consider the following areas.

Discrete or embedded? There were strong
arguments for adopting an ‘embedded’ approach
to the old ICT programme of study, in which ICT
capability was covered in meaningful contexts
derived from other subject areas.

This looks to be a lot harder for computing
because of the discrete subject knowledge
expectations, but it’s certainly not impossible. In
fact, there are wide applications of computational
thinking (such as looking at algorithms and
decomposing problems into smaller steps) across
the curriculum, and there’s plenty of scope for
using other subject areas to provide interesting
objectives for pupils’ programming projects.

National curriculum or national curriculum
‘plus’? Remember that the national curriculum
is the minimum. Will you choose to include
additional content? If so, what other things might
be added to the list? There are arguments that
the key stage 2 curriculum should also include an
explicit requirement for creative work with html.
Note that these things are not prohibited, and you
might like to include these, or other, elements
when developing your own scheme of work.

Themes? As you read through the programme
of study, what overarching themes suggest
themselves to you? Do these provide a structure
that ensures both progression and continuity
as pupils move through primary school? Might
these be one way of fitting different parts of the
computing curriculum together?

Grid? How detailed should the scheme of work
be? Many schools adopt a half-termly grid, but
a more flexible structure might suit your school
better. Similarly, consider whether the scheme
of work needs to specify the order in which each
year’s units are studied. Is the order important for
progression? Should individual class teachers be
able to decide?

Format? In practical terms, what should the final
document look like? A single table, tables for
each year/half term, or simply text laid out in
paragraphs? Will you need to print a copy or can
it be entirely online, perhaps as a collaborative
document (e.g. in Google Drive, a wiki or on

GitHub11) for you and your colleagues
to revisit and revise in the light of the

experience gained from teaching it.

11See https://github.com/

PLANNING

https://github.com/

15

Also think about how much detail needs to be
specified – as a rule of thumb, include enough for
a teacher lacking in confidence to feel that they
can do a good job, but not so much that the most
confident feel limited by what’s there. Depending
on the decisions above, it would be reasonable to
expect a scheme of work to include:
• topic title
• curriculum coverage
• learning objectives
• outline of activities
• resources
• cross-curricular links
• assessment opportunities.

There are several ways to go about implementing
a scheme of work for computing.

• Top down, starting from the programme of
study itself.

• Bottom up, starting with ideas for projects and
units of work, which include cross-curricular
and embedded approaches.

• Off the shelf, using a commercial, free or
crowd-sourced scheme, perhaps with some
modifications.

• A more pupil-centred, enquiry-led approach,
although a scheme of work in this context might
merely suggest possible projects, resources
and a consistent approach to monitoring
achievement and curriculum coverage.

Let’s consider these approaches in turn.

Starting with the
programme of study

The programme of study gives a clear list of the
content that should be covered in each key stage,
to which you might like to add further elements of
your own. One advantage of using the programme
of study as your starting point is that it’s relatively
easy to translate the content into specific
objectives, because it’s clear what needs to be
covered, and when.

In planning a scheme of work, it’s sensible to look
for themes that can provide a structure, making it
easier to ensure progression and continuity over
the time a pupil is at primary school.

Perhaps the most obvious set of themes is
computer science, information technology and
digital literacy. You could further divide the
computer science aspect into Programming
and Other elements of computer science.
The ‘foundations, applications, implications’
characterisation of these elements would provide
a similar overall structure.

Another approach identifies six aspects: Coding,
Computer science, Networks and the internet,
Communication and collaboration, Creativity and
Productivity. This leads to a half-termly grid, with
each aspect being the focus for half a term.

A fourth option might be to look beyond the
computer science/information technology/
digital literacy taxonomy to broader themes
across the subject. Dividing the curriculum into
Computational thinking, Design and Criticality and
responsibility would be one approach.

Whichever themes you select, revisiting these
areas in each year can ensure both continuity and
progression for pupils, and make it easier to plan
individual units of work. There should be a clear
sense of what pupils have already experienced,
and what subsequent steps in learning are likely
to involve. A whole-school programming strand
might look something like this.

Year 1 Solving problems with Bee-Bots
Year 2 Turtle graphics on the floor and screen
Year 3 Scripted animations
Year 4 A maths quiz
Year 5 Computer games
Year 6 Developing applications for the
 mobile phone

The above is intended for illustration only. It’s
important to remember that the focus is on
developing an understanding of programming,
rather than developing skills in using just one
programming language. A similar sequence of
half-termly units could be developed for other
themes.

PLANNING

16

Starting with projects

An alternative approach is to start with ideas for
individual projects, perhaps with each being half a
term in length.

If this is the approach you’ve used until now for
planning ICT, you might find that you can use
many of your existing ICT projects to cover some
of the computing curriculum. This is particularly
true for the information technology and digital
literacy elements, although you may have to
make some changes to allow space for the new
computer science content, including the additional
expectations for programming.

Some of your existing units will perhaps
need modifying to focus on knowledge and
understanding rather than skills. For example, if
you have a current unit on email, that could be
modified to develop pupils’ understanding of how
networks, including the internet, work, how they
provide services such as email, and how this can
be used for communication and collaboration.
You could also cover key issues in e-safety such as
spam, malware in attachments, and spoofed links.

A project-based approach allows ample scope
for exploiting the connections between the
different aspects of computing, perhaps using the
‘foundations, applications, implications’ model as
a starting point for planning some of these units
of work.

Projects could be linked to other areas of the
curriculum, perhaps using themes from your
school’s ‘creative curriculum’ to suggest related
computing topics. Similarly, this approach would
work if you’ve decided to adopt an embedded
or integrated approach to computing, with
computing content covered through topics drawn
from other curriculum areas.

For example, there are links between algorithms
and maths. Creating a Scratch script for a maths
game that tests a player on adding fractions would
develop an understanding of the algorithm for
fractions, as well as the sequencing, selection,
repetition and variables requirements of the
computing programme of study.

Using a pre-written
scheme of work

It is likely that various organisations and
individuals will develop schemes of work for the
new computing curriculum. It’s perhaps preferable
to think in terms of adapting, rather than
adopting, schemes of work developed by others,
whether commercial or otherwise. A sensible
approach would be to use an existing plan as a
starting point, and then edit it so that it draws on
the expertise and enthusiasm of your colleagues,
fits well with other areas of your curriculum,
makes use of the resources you have and, vitally,
appeals to your pupils.

The internet, of course, makes it easy to
collaborate on documents, so there’s no need
to do all this planning on your own. Joining with
like-minded colleagues in a local network, via
a subject association, or in informal groups via
Twitter or other social networks, will allow you
to draw on others’ insights and experience, and
your contribution may impact on pupils’ learning
beyond your own school. The Computing at School
(CAS) Community12 is a good resource – either
online or through its network of local hubs.

Using a pupil-centred
approach

One way of going about this might be to develop a
set of modular projects for pupils to choose from,
structured so that there is a clear progression
from easier to harder projects.

Another pupil-centred method would be to use an
enquiry-based approach at the beginning of each
half-termly unit: briefing pupils on the overall
topic, and then establishing what they already
know and what they’d like to find out. The unit
can then be planned in detail around areas of
particular interest to pupils.

There are ample resources available to support
a more independent approach to learning
computing. Scratch and Kodu have vibrant user
communities; online interactive tutorials provide
an introduction to programming languages such
as Ruby13 and Javascript,14 and there are many
tutorials and walkthroughs on Khan Academy15
and YouTube.

12See http://community.computingatschool.org.uk/door
13See http://tryruby.org/levels/1/challenges/0
14See www.codecademy.com
15See www.khanacademy.org/science/computer-science

PLANNING

http://community.computingatschool.org.uk/door
http://tryruby.org/levels/1/challenges/0
http://www.codecademy.com
http://www.khanacademy.org/science/computer-science

17

Resourcing
Alongside any curriculum development work,
some thought needs to be given to providing the
resources necessary for teaching. Despite the
opportunity to use resources like the excellent
materials provided by New Zealand-based CS
Unplugged,16 you will probably need a set of
computers for teaching computing. General-
purpose laptops and desktops are ideal, and it
really doesn’t matter if you’re using Windows PCs
or Macs, or even Linux, for the primary computing
curriculum. The Raspberry Pi offers a great
platform for programming and developing pupils’
understanding of networks and the web.

For many activities, pupils may need access to
the internet, particularly the web. You’ll need
to make sure the usual safeguards are in place,
but Ofsted’s recommendation17 is not to be too
restrictive; they advocate a managed, rather than
a ‘locked down’, approach. They recommend that
pupils need to learn how to use technology safely,
respectfully and responsibly, not to have their
responsibility for this taken on by others.

You’ll need some tools with which pupils can
program their computers. MIT’s Scratch, for
example, provides all the tools needed to cover
the programming requirements of the new
curriculum.

Alternatives are available: Kodu is a rich, game-
like environment providing a graphical ‘way in’ to
programming; Logo has a very long history as an
introductory programming language, although as
it’s text-based there’s plenty more scope for bugs
in code through typing or spelling errors. Some
leading primary practitioners are introducing
pupils to text-based programming using Python.

While the programming expectations for key stage
1 can be met using screen-based programming
tools such as Scratch, there’s much to be said for
working with programmable toys at this age,
such as Bee-Bots, Roamers, Pro-Bots and Big
Traks, although there’s certainly no requirement
to do so.

At key stage 2, if you want to go down the
‘controlling physical systems’ route, you’ll need
some cheap components (sensors, lights and
motors) and some way of connecting these to
a computer. The FlowGo interface can be used
with Windows PCs. LEGO®’s WeDo interfaces
nicely with Scratch 1.4, and there are interesting,
perhaps more demanding, possibilities using
platforms such as Arduino or Raspberry Pi.

At key stage 2, pupils are expected to use other
digital devices, which could be as simple as digital
cameras or audio recorders, but could also include
more complex devices such as smartphones or
tablets. There is also an expectation that pupils will
have access to internet-based services, such as the
school’s learning platform, a blog, or cloud-based
software such as Google Drive or Office 365.

Many schools are considering providing pupils
with access to tablets. They can enhance learning
across the curriculum, particularly if coupled with
corresponding pedagogic developments. Although
tablets were not intended as a programming
platform, there are a growing number of apps18
that provide an introduction to programming.
It’s also possible to access HTML5-based online
programming tools such as Snap!19

16See www.csunplugged.org
17See www.ofsted.gov.uk/sites/default/files/documents/surveys-
and-good-practice/t/The%20safe%20use%20of%20new%20
technologies.pdf
18See http://antsict.wordpress.com/2013/02/23/coding-
computer-science-and-ipads-my-current-view/ for a good
overview.
19See http://snap.berkeley.edu/snapsource/snap.html, a close
variant of Scratch.

RESOURCING

17

http://www.csunplugged.org
www.ofsted.gov.uk/sites/default/files/documents/surveys-and-good-practice/t/The%20safe%20use%20of%20new%20technologies.pdf
www.ofsted.gov.uk/sites/default/files/documents/surveys-and-good-practice/t/The%20safe%20use%20of%20new%20technologies.pdf
www.ofsted.gov.uk/sites/default/files/documents/surveys-and-good-practice/t/The%20safe%20use%20of%20new%20technologies.pdf
http://antsict.wordpress.com/2013/02/23/coding-computer-science-and-ipads-my-current-view/
http://antsict.wordpress.com/2013/02/23/coding-computer-science-and-ipads-my-current-view/
http://snap.berkeley.edu/snapsource/snap.html

18

Teaching
Seymour Papert (1928–) is seen by many as the
pioneer of computing in schools. He is probably
best known as the co-developer of the Logo
programming language in the late 1960s.

Logo introduced the idea of turtle graphics,
in which a computer-controlled robot ‘turtle’,
equipped with a pen, moves, turns and draws
to make shapes on paper. A child who is
programming Logo can define their own ‘words’
(procedures) so, for example, the turtle could
be programmed to make a square by giving the
command, ‘Move forward and turn 90°’ four times.

Papert saw Logo as more than a programming
language, though; he believed it was a powerful
tool for pupils to develop their thinking skills.

I began to see how children who had learned
to program computers could use very concrete
computer models to think about thinking and to
learn about learning and in doing so, enhance their
powers as psychologists and as epistemologists.20

Insights such as this lie at the heart of the changes
in the curriculum from ICT to computing. Many
teachers may recall Logo from their own school
days, and Logo was a key influence on Scratch,
which was developed by one of Papert’s PhD
students.

Inspired by his work with Logo was Papert’s theory
of learning: constructionism. Put simply, this is
the theory that people learn best through making
things for other people.

Learning as ‘building knowledge structures’ . . .
happens especially felicitously in a context where
the learner is consciously engaged in constructing
a public entity.21

Pupils learn more when they write about a topic
than when they read about it, especially if they
know that you, and perhaps others, will be
reading what they write. It seems likely that this is
true of every aspect of computing.

• Pupils will learn computer science far more
effectively by writing programs to show to
others.

• Pupils will learn to use information technology
more effectively if they’re doing something
creative, such as making a presentation,
website or video, especially if this is to be
shown to others.

• Pupils will develop a richer digital literacy if
they document what they know and learn for
others through blog posts, audio recordings or
screencasts.

When teaching the computing curriculum, look
wherever you can for practical, creative projects
that pupils can work on, perhaps individually,
perhaps with a partner, or as part of a small
group: this, after all, is how programming and
information technology happens in the ‘real
world’ and on most university courses. The
projects you set are more likely to be motivating
if they’re linked to your pupils’ own interests and
enthusiasms. These might be to do with other
curriculum areas, the life of the school, or their
interests beyond school.

Also, look for an audience for pupils’ work,
whether they’re presenting to one another,
writing for a public blog, creating software or
digital content for younger pupils, or planning to
upload their work for others to see, via Scratch or
a school YouTube account.

20Papert, S., Mindstorms: Children, Computers, and Powerful Ideas,
(Basic Books, 1993), p.21.
21See www.papert.org/articles/SituatingConstructionism.html

TEACHING

18

http://www.papert.org/articles/SituatingConstructionism.html

19

Games can be very motivating, and pupils
often enjoy evaluating each other’s work.
Remember, though, that such projects are not
an end in themselves: the focus should remain
on developing knowledge and understanding
of computing through such activities, however
engaging they may be. Your role as a teacher
extends beyond setting the challenge and
providing support in projects, to helping pupils
understand the ideas that lie at the heart of the
creative work in which they’re engaged, and to
helping pupils make the connection between
these concepts.

Here are a few examples of projects.

• Making and editing a cookery video in which
the algorithm of a recipe is clearly illustrated.

• Creating a video game using characters and
settings from a shared reading book.

• Developing educational software for younger
pupils to practise mental arithmetic.

• Creating a scripted or stop-motion animation
telling the story of an email’s journey from
sender to recipient.

• Adding content to the Simple English Wikipedia
to explain computing concepts (or concepts
from other topics pupils are studying) to a
global audience.

• Developing a micro-site for the school on
how to use the web safely, respectfully and
responsibly.

Many other ideas for creative projects will suggest
themselves, either starting from, or ending with,
the programme of study content.

American educationalist David Jonassen22 coined
the term ‘meaningful learning’ to describe
projects such as these. He identified five
essential aspects for learning to be described as
‘meaningful’, and these might help in considering
what makes for effective learning in computing.

Active: Pupils should be actively engaged in their
learning – typically this will be doing something
on a computer, but it could also be taking part in a
discussion or an activity away from the computer,
such as role-play to illustrate how packets of data
travel across the internet.

Constructive: This can be understood both in the
sense of constructing meaning, developing pupils’
mental model of computation and technologies,
and in the sense of making something, whether
this is a computer program, a presentation or a
blog post.

Intentional: Ideally, pupils should have some
degree of choice over how they tackle a task or
project, or perhaps even over the task or project
itself. It is unlikely they will learn much from
copying a worked solution off an IWB screen, and
many projects can be constructed or adapted to
allow plenty of scope for individual creativity.

Authentic: Wherever possible, try to link activities
with pupils’ own experiences, both within and
beyond school: cross-curricular projects work very
well, as do those linked to the life of the school
itself, or to pupils’ experiences of technology.

Cooperative: Computing, in both industrial and
academic contexts, is a collaborative endeavour.
Where possible, construct activities so that pupils
can work together, supporting one another in
their learning.

This is not to say that creative, collaborative
projects are the only, or in some circumstances
even the best, approaches to teaching computing.
There are many topics where pupils will learn
a lot through classroom discussion, teacher
demonstration or watching high-quality media.

22Howland, J. L., Jonassen, D. H. and Marra, R. M., Meaningful
Learning with Technology (Pearson, 2011).

TEACHING

20

Technologically
enhanced learning

There are many high-quality, often interactive,
resources available via the web to support pupils’
learning in computing.

Typing error messages into a search engine will
often give a pointer towards a solution, and
provide some opportunity for ‘just-in-time’
learning in the process.

YouTube hosts countless ‘walkthrough’ tutorials
for a wide variety of software packages, including
programming toolkits such as Scratch. Your pupils
might add their own.

Wikipedia23 provides comprehensive coverage of
computing topics and links for further study, as
well as promoting a more thoughtful evaluation
of online information and a potential audience for
pupils’ own contributions.

There are plenty of opportunities for pupils to
seek help, get feedback, provide support to others
and share their work with an audience beyond the
classroom through your school learning platform,
web space provided by your local authority or
regional broadband consortium, and online
communities based around particular software.24

Pupils can put into practice what they know
about using technology safely, respectfully and
responsibly, as well as developing these skills in an
immediately meaningful context.

Communities like these feature prominently in the
work of computing professionals, many of whom
are generous in sharing their work, expertise and
experience.25

Inclusion

The digital divide
It is important to help pupils realise that access to
technology can bring benefits and power, but that
not everyone has easy access. Lack of access to
technology can disadvantage particular groups or
individuals within society.

Think carefully about whether any groups of pupils
are excluded from, or disadvantaged by, activities
you plan. For example, basing lessons on mobile
phone apps or computer games may disadvantage
those without access to such technology at home;
providing resources or activities for pupils to
access online from home seems unfair to those
without internet access at home. Introducing
lunchtime and after-school clubs is a practical
way of making access available to all. If funds
allow, consider providing pupils without their own
computer with an old school computer that they
can use at home.

Gender and inclusion
It is important to counter the stereotypes often
associated with information technology and
computing (e.g. that it is a male-only field). Efforts
should be made, for example, in the selection of
historical or contemporary case studies, to reflect
the positive contributions of female practitioners
such as Ada Lovelace, Grace Hopper or Dame
Wendy Hall. Project topics should also be carefully
considered to appeal to both genders.

Assistive technology
As with other areas of the curriculum, computing
can be made more accessible to pupils with special
educational needs or disabilities through the use
of assistive technology – from adapted mice or
keyboards, to screen readers and Braille displays.
Within the curriculum, pupils might evaluate
whether software and digital content, including
those they create themselves, are accessible to
users with special needs. At key stage 2, pupils
might learn about assistive technology as examples
of ‘forms of input and output’.

English as an additional language
Technology can also facilitate the inclusion of
pupils learning English as an additional language.
The user interface of the operating system or
application software can be set to languages other
than English. Scratch and Snap! programs, for
example, can be written in a variety of languages.
Machine translation may also be useful for project
work in which pupils learn about the opportunities
offered by the internet.26

23See http://simple.wikipedia.org/ for the Simple English version of Wikipedia.
24See, for example, http://scratch.mit.edu/discuss/
25See, for example, https://github.com/ and http://stackoverflow.com/
26This section on inclusion is based on the Naace/CAS joint
guidance: http://naacecasjointguidance.wikispaces.com/Terminology

TEACHING

http://simple.wikipedia.org/
http://scratch.mit.edu/discuss
https://github.com/
http://stackoverflow.com/
http://naacecasjointguidance.wikispaces.com/Terminology

21

Gifted and talented pupils

There are many opportunities for enrichment in
computing, which need not be limited to talented
or gifted pupils. There are perhaps parallels with
music education, where it is not uncommon for
primary pupils to be accomplished musicians
in their own right, through independent study
outside of school. The school can support and
encourage by celebrating achievements and
providing opportunities for pupils to pursue their
interests.

There is a range of possibilities for independent
learning, perhaps using resources or online
communities to provide stimulus or support
beyond what your school can offer. Your role
might encompass steering very able pupils
towards the best resources, providing critical
feedback on their work, or setting further
challenges.

Look for ways to enrich pupils’ experience of
computing rather than accelerating them through
the syllabus. The provisional nature of work on
computers allows scope for work to be refined
and developed. Encouraging pupils to think about
the algorithms and programs of applications they
use is an effective way to develop some aspects
of computational thinking, for instance by asking
them to predict what will happen when they
adopt a particular strategy in a computer game, or
to consider how an image file changes when the
brightness or colour is adjusted.

You can also provide, or allow pupils to choose,
different sets of tools. For instance, programming
tasks accomplished by most pupils in Scratch
could be tackled in Logo or Python by particularly
advanced pupils, or they might use Adobe
Premiere Elements for video editing undertaken in
Movie Maker by the rest of the class.

Many schools have implemented successful
‘Digital Leaders’ schemes, in which some pupils
take responsibility for aspects of technology in the
classroom or school. Although talented or gifted
pupils can be a useful source of technical support
or peer mentoring, it’s important to ensure that
they too are making progress.

Informal learning

There is scope for pupils to learn more about
computing for themselves outside of school, and
it would be good to encourage and celebrate this
in school.

Many of the resources suitable for teaching
computing in school are available free for pupils to
use at home if they have a computer of their own.

Many schools have set up Code Clubs, often with
external support, perhaps through someone
working in the information technology industry.
Code Club27 make available carefully constructed
resources and plans, and help manage DBS
clearance for volunteers wanting to help schools
in this way.

Other face-to-face events, such as Raspberry Jams,
Young Rewired State and CoderDojo, are perhaps
more suitable for secondary pupils. However, they
have no lower age limit, although some parental
involvement would be expected.

Scratch and Kodu have vibrant online forums,
with ample opportunity for primary pupils to learn
from others and to share their expertise as part of
a moderated, global community.

27See www.codeclub.org.uk

TEACHING

http://www.codeclub.org.uk

22

Assessment
Formative assessment

There are certainly some challenges to assessing
computing.

• It’s hard for teachers to judge pupils’ knowledge
and understanding based on the outcomes of
practical tasks alone.

• If pupils work collaboratively, it can be hard to
identify each individual’s contribution.

• If the teaching of computing is embedded in
other subjects, it’s often difficult to separate
attainment in computing from that in the host
subject.

Despite these challenges, the assessment for
learning (AfL) techniques that you’re familiar with
in other subjects still apply. Let’s look at some of
the AfL approaches and consider how they can be
applied to computing.

• Self-assessment: The curriculum expects
pupils to debug their own programs, use
logical reasoning to explain simple algorithms
(including their own), and detect and correct
errors in both algorithms and programs.
One way to encourage self-assessment is for
pupils to maintain a blog or video log of their
work in computing, incorporating a reflective
commentary alongside examples of what
they’ve done.

• Peer-assessment: The ideas for self-assessment
suggested above translate naturally into peer-
assessment, with pupils working with a partner
to review, and help correct, algorithms and
programs, or providing critical, constructive
feedback on digital content. Methods used
by professional software developers, such as
programming in pairs28 and reviewing code,
translate easily into the classroom. Online
feedback and discussion, whether in the Scratch
community or on pupils’ blogs, also facilitate
peer-based assessment.

• Open questioning: Pupils’ knowledge of the
concepts covered by the programme of study
may not be immediately apparent in the
work they produce. The use of open
questioning is one way in which you can both
assess and develop their grasp of concepts.

‘Why’ and ‘how’ questions work well: Why did
Google place that result at the top? How does
your program work? Why might that not be a
safe website?, etc.

• Discussion with peers: Encouraging pupils to
use similar open questions can be effective in
allowing them to focus on what they’ve learned,
rather than only on what they’ve done. Moving
some of this discussion online, and perhaps
involving pupils in other schools or countries,
would be one powerful way to illustrate the
opportunities offered by computer networks for
communication and collaboration.

• Target setting: Project management skills such
as planning, organising, motivating others and
allocating resources, are of great importance
in real-world projects, and they can be widely
applied in education. The ‘decomposition’
aspect of computational thinking, in which large
problems are broken down into small tasks, is a
necessary part of managing all but the smallest
of projects.

• KWL: Using lists to identify what pupils
already know, what they want to learn and
subsequently what they have learned is a
useful technique that can be used to support
independent learning in computing. In
particular, this can be applied to the logical
reasoning needed to explain algorithms and
to detect and correct errors, with pupils first
establishing a firm foundation, before exploring
alternatives and subsequently reviewing what
they have learned, rather than only what they
have done.

28Williams, L. A. and Kessler, R. R., All I Really Need to Know
About Pair Programming I Learned in Kindergarten, pp.108–114
(Communications of the ACM, 43(5) 2000).

ASSESSMENT

22

23

Using technologically enhanced learning can be
particularly effective in assessment for learning, as
some of the above suggestions indicate. Perhaps
the most immediate opportunities are through the
following.

• Blogs: There are now many examples of English
primary pupils routinely recording and sharing
their learning with a global audience through
the use of class blogs. Individual pupil blogs
can be a powerful tool to encourage self- and
peer-assessment, track progress, give feedback,
collate evidence, and share work with parents.
It’s now unnecessary to print off work from
computing lessons when work can be attached
to a reflective commentary on a pupil’s blog,
or saved to an area of the network or learning
platform.

• Automatic feedback: A number of sites offer
interactive tutorials in programming languages,
providing immediate feedback on the success or
failure of code in response to simple challenge
questions. While few of these sites are aimed
at primary school pupils, they may be of use for
gifted or talented pupils eager to learn more
programming independently.29

Summative assessment

National curriculum assessment has undergone
considerable change for the new framework.
The national curriculum review expert panel
recommended that:

Attainment Targets in the presently established
level descriptor form should not be retained.30

Responding to their report in June 2012, Michael
Gove confirmed that:

In order to ensure that every child is expected to
master this content, I have ... decided that the
current system of levels and level descriptors
should be removed and not replaced.31

So the attainment targets in all national
curriculum subjects merely state:

By the end of each key stage, pupils are expected
to know, apply and understand the matters, skills
and processes specified in the relevant programme
of study.32

This establishes a direct link between the contents
of the programme of study and its assessment.
Subsequent DfE guidance has made clear that:

Schools will be able to introduce their own
approaches to formative assessment, to support
pupil attainment and progression. The assessment
framework should be built into the school
curriculum, so that schools can check what pupils
have learned and whether they are on track to
meet expectations at the end of the key stage, and
so that they can report regularly to parents.33

Perhaps the most obvious way to address this is
to adopt an entirely criteria-based approach to
assessment, with teachers forming a judgement as
to whether each child has learned all the content
of the programme of study by the end of the key
stage.

The evidence to support this judgement can
be assembled over the course of the key stage
and need not be an onerous burden: as a child
demonstrates their mastery of part of the
curriculum the statement could be ‘ticked off’,
with evidence of this achievement forming part of
the child’s computing portfolio or blog. It’s likely
that many pupils will assemble a lot of evidence
for some statements and less for others, but some
evidence of mastering each element should suffice
to demonstrate meeting the expectations of the
attainment targets.

Moreover, as a pupil’s profile of achievement
is built up, the statements yet to be achieved
should provide a clear guide for planning, showing
exactly where the ‘gaps’ are in each pupil’s
knowledge, skills and understanding, and thus
where subsequent teaching should be targeted.

29See, for example, www.khanacademy.org/cs/programming,
www.codeavengers.com/#learner or www.tryhaskell.org
30See www.gov.uk/government/uploads/system/uploads/
attachment_data/file/175439/NCR-Expert_Panel_Report.pdf
(p.9).
31See http://media.education.gov.uk/assets/files/pdf/l/
secretary%20of%20state%20letter%20to%20tim%20oates%20
regarding%20the%20national%20curriculum%20review%20
11%20june%202012.pdf (p.3).
32See www.gov.uk/government/publications/national-
curriculum-in-england-computing-programmes-of-study/
national-curriculum-in-england-computing-programmes-of-
study
33See www.education.gov.uk/schools/teachingandlearning/
curriculum/nationalcurriculum2014/a00225864/
assessingwithout-levels

ASSESSMENT

http://www.khanacademy.org/cs/programming
http://www.codeavengers.com/#learner
http://www.tryhaskell.org
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/175439/NCR-Expert_Panel_Report.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/175439/NCR-Expert_Panel_Report.pdf
http://media.education.gov.uk/assets/files/pdf/l/secretary%20of%20state%20letter%20to%20tim%20oates%20regarding%20the%20national%20curriculum%20review%2011%20june%202012.pdf
http://media.education.gov.uk/assets/files/pdf/l/secretary%20of%20state%20letter%20to%20tim%20oates%20regarding%20the%20national%20curriculum%20review%2011%20june%202012.pdf
http://media.education.gov.uk/assets/files/pdf/l/secretary%20of%20state%20letter%20to%20tim%20oates%20regarding%20the%20national%20curriculum%20review%2011%20june%202012.pdf
http://media.education.gov.uk/assets/files/pdf/l/secretary%20of%20state%20letter%20to%20tim%20oates%20regarding%20the%20national%20curriculum%20review%2011%20june%202012.pdf
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
http://www.education.gov.uk/schools/teachingandlearning/curriculum/nationalcurriculum2014/a00225864/assessingwithout-levels
http://www.education.gov.uk/schools/teachingandlearning/curriculum/nationalcurriculum2014/a00225864/assessingwithout-levels
http://www.education.gov.uk/schools/teachingandlearning/curriculum/nationalcurriculum2014/a00225864/assessingwithout-levels

24

Comparing individual profiles, and the evidence
on which they’re based, at the beginning and end
of the year, should provide ample evidence of
progress, of a far more meaningful nature than
‘two sub-levels’, specifying exactly what has been
learned that year that wasn’t already known.
For this to work effectively, it might be sensible to
break down the programme of study statements
into their constituent clauses. As pupils achieve
individual clauses, or perhaps as they achieve
all the components of a statement from the
programme of study, their achievement could be
recognised through some form of badge. Mozilla’s
OpenBadges system34 provides one possible
solution.

While the DfE and others make a strong case for
the abolition of attainment levels, their use is
ingrained in many teachers’ professional practice,
as well as in the systems schools have in place
to monitor pupils’ progress. Nothing in the DfE’s
guidance prevents schools from continuing to use
levels to monitor progress, and it seems likely that
some schools will choose to do so, at least for the
short to medium term.

In developing its computer science curriculum,
Computing at School produced a set of level
descriptors35 for computer science, which might
be used, perhaps with a little modification,
alongside some statements from the old ICT
attainment targets36 to report progression on the
computer science (CS), information technology

(IT) and digital literacy (DL) components of the
programme of study.

Alternatively, bearing in mind the emphasis on
a direct link between what’s taught and what’s
assessed, it’s possible to take the statements
from the programme of study and arrange them
into some sort of order, from easier to harder
statements. A somewhat arbitrary numbering
might suggest a structure similar to the levels
of the old attainment targets. For example,
see the table on the next page. Note that this
table is meant for illustration only, without any
implication that these stages equate to old levels.

Another approach to levelling, although perhaps
not in the spirit of the DfE’s guidance, is to look
at the nature of activities and the capabilities
demonstrated by pupils separated from the
subject content itself, perhaps using Bloom’s
revised taxonomy, or something similar, as a
guide.

• Remembering
• Understanding
• Applying
• Analysing
• Evaluating
• Creating

34See www.openbadges.org/
35See www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf (pp.21–22).
36See http://webarchive.nationalarchives.gov.uk/20110813032310/http://qcda.gov.uk/libraryAssets/media/Level_Descriptions_-_ICT.pdf for the most
recent proposed revision.

ASSESSMENT

http://www.openbadges.org/
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://webarchive.nationalarchives.gov.uk/20110813032310/http://qcda.gov.uk/libraryAssets/media/Level_Descriptions_-_ICT.pdf

25

CS IT DL

1

Understand what algorithms are

Create simple programs

Use technology purposefully to create
digital content

Use technology purposefully to store
digital content

Use technology purposefully to retrieve
digital content

Use technology safely

Keep personal information private

Recognise common uses of information
technology beyond school

2

Understand that algorithms are
implemented as programs on digital
devices

Understand that programs execute by
following precise and unambiguous
instructions

Debug simple programs

Use logical reasoning to predict the
behaviour of simple programs

Use technology purposefully to organise
digital content

Use technology purposefully to
manipulate digital content

Use technology respectfully

Identify where to go for help and support
when they have concerns about content
or contact on the internet or other online
technologies

3

Write programs that accomplish specific
goals

Use sequence in programs

Work with various forms of input

Work with various forms of output

Use search technologies effectively

Use a variety of software to accomplish
given goals

Collect information

Design and create content

Present information

Use technology responsibly

Identify a range of ways to report
concerns about contact

4

Design programs that accomplish specific
goals

Design and create programs

Debug programs that accomplish specific
goals

Use repetition in programs

Control or simulate physical systems

Use logical reasoning to detect and
correct errors in programs

Understand how computer networks can
provide multiple services, such as the
World Wide Web

Appreciate how search results are
selected

Select a variety of software to accomplish
given goals

Select, use and combine internet services

Analyse information

Evaluate information

Collect data

Present data

Understand the opportunities computer
networks offer for communication

Identify a range of ways to report
concerns about content

Recognise acceptable/unacceptable
behaviour

5

Solve problems by decomposing them
into smaller parts

Use selection in programs

Work with variables

Use logical reasoning to explain how
some simple algorithms work

Use logical reasoning to detect and
correct errors in algorithms

Understand computer networks,
including the internet

Appreciate how search results are ranked

Combine a variety of software to
accomplish given goals

Select, use and combine software on a
range of digital devices

Analyse data

Evaluate data

Design and create systems

Understand the opportunities computer
networks offer for collaboration

Be discerning in evaluating digital
content

ASSESSMENT

26

Concluding
remarks

This is a really exciting time to be a pupil at
primary school. The opportunities that advances
in technology will bring to your pupils as they
grow up are hard to imagine. The curiosity,
creativity and courage that you nurture in them
now should endure as they move on through
education and into adult life. To exploit fully the
opportunities that current and future technology
offers them, pupils will draw on the understanding
of computing you provide them with, as well as
confidence gained through working on a range
of meaningful projects throughout their primary
education.

It’s a really exciting time to be a primary school
teacher, too. Don’t be daunted by the changes in
the move from ICT to computing. Rather, see this
as an opportunity to develop your own knowledge
about computing and to learn to program, if
you’ve never had the chance before. Although
this might sound like hard work, it’s actually
great fun. You’ll find that you make better use of
the technology you have at home and in school,
and also that you start to think a bit differently,
looking at systems and problems in the same way
a computer scientist does.

CONCLUDING REMARKS

26

27

Glossary
algorithm – an unambiguous procedure or precise
step-by-step guide to solve a problem or achieve a
particular objective.

computer networks – the computers and the
connecting hardware (wifi access points, cables,
fibres, switches and routers) that make it
possible to transfer data using an agreed method
(‘protocol’).

control – using computers to move or otherwise
change ‘physical’ systems. The computer can be
hidden inside the system or connected to it.

data – a structured set of numbers, representing
digitised text, images, sound or video, which can
be processed or transmitted by a computer.

debug – to detect and correct the errors in a
computer program.

digital content – any media created, edited or
viewed on a computer, such as text (including the
hypertext of a web page), images, sound, video
(including animation), or virtual environments,
and combinations of these (i.e. multimedia).

information – the meaning or interpretation given
to a set of data by its users, or which results from
data being processed.

input – data provided to a computer system, such
as via a keyboard, mouse, microphone, camera or
physical sensors.

internet – the global collection of computer
networks and their connections, all using shared
protocols (TCP/IP) to communicate.

logical reasoning – a systematic approach to
solving problems or deducing information using
a set of universally applicable and totally reliable
rules.

output – the information produced by a computer
system for its user, typically on a screen, through
speakers or on a printer, but possibly though the
control of motors in physical systems.

program – a stored set of instructions encoded in
a language understood by the computer that does
some form of computation, processing input and/
or stored data to generate output.

repetition – a programming construct in which
one or more instructions are repeated, perhaps
a certain number of times, until a condition is
satisfied or until the program is stopped.

search – to identify data that satisfies one or more
conditions, such as web pages containing supplied
keywords, or files on a computer with certain
properties.

selection – a programming construct in which the
instructions that are executed are determined by
whether a particular condition is met.

sequence – to place programming instructions in
order, with each executed one after the other.

services – programs running on computers,
typically those connected to the internet, which
provide functionality in response to requests; for
example, to transmit a web page, deliver an email
or allow a text, voice or video conversation.

simulation – using a computer to model the
state and behaviour of real-world (or imaginary)
systems, including physical and social systems; an
integral part of most computer games.

software – computer programs, including both
application software (such as office programs,
web browsers, media editors and games) and the
computer operating system. The term also applies
to ‘apps’ running on mobile devices and to web-
based services.

variables – a way in which computer programs
can store, retrieve or change simple data, such as
a score, the time left, or the user’s name.

World Wide Web – a service provided by
computers connected to the internet (web
servers), in which pages of hypertext (web pages)
are transmitted to users; the pages typically
include links to other web pages and may be
generated by programs automatically.37

GLOSSARY

37Phil Bagge provides a useful glossary with more detailed
explanations of some of these terms: see http://code-it.co.uk/
csvocab.html

http://code-it.co.uk/csvocab.html
http://code-it.co.uk/csvocab.html

28

Resources
Background

Computing at School Working Group, Computer
Science: A Curriculum for Schools (Cambridge,
2012), available at: www.computingatschool.org.
uk/data/uploads/ComputingCurric.pdf

The Royal Society, Shut Down or Restart? The Way
Forward for Computing in UK Schools (London,
2012), available at: http://royalsociety.org/
uploadedFiles/Royal_Society_Content/education/
policy/computing-in-schools/2012-01-12-
computing-in-Schools.pdf

Rushkoff, D., Program or be Programmed: Ten
Commands for a Digital Age (OR Books, 2009).

Teaching Agency, Subject Knowledge
Requirements for Entry into Computer Science
Teacher Training (London, 2012), available at:
http://academy.bcs.org/sites/academy.bcs.org/
files/subject%20knowledge%20requirements%20
for%20entry%20into%20cs%20teacher%20
training.pdf

Subject knowledge

Armoni, M. and Ben-Ari, M., Computer Science
Concepts in Scratch (Michal Armoni and Moti Ben-
Ari, 2013).

Bentley, P.J., Digitized: The Science of Computers
and How it Shapes our World (Oxford University
Press, 2012).

Berners-Lee, T., Answers for Young People,
available at: www.w3.org/People/Berners-Lee/
Kids.html

Blum, A., Tubes: Behind the Scenes at the Internet
(Penguin, 2013).

Brennan, K. and Resnick, M., ‘New frameworks
for studying and assessing the development of
computational thinking’ (2012), available at:
http://web.media.mit.edu/~kbrennan/files/
Brennan_Resnick_AERA2012_CT.pdf

Computing at School, The Raspberry Pi Education
Manual (CAS, 2012), available at: http://pi.cs.
man.ac.uk/download/Raspberry_Pi_Education_
Manual.pdf

Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books, 1993).

Petzold, C., Code: The Hidden Language of
Computer Hardware and Software (Microsoft
Press, 2009).

RESOURCES

28

http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://royalsociety.org/uploadedFiles/Royal_Society_Content/education/policy/computing-in-schools/2012-01-12-computing-in-Schools.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://academy.bcs.org/sites/academy.bcs.org/files/subject%20knowledge%20requirements%20for%20entry%20into%20cs%20teacher%20training.pdf
http://www.w3.org/People/Berners-Lee/Kids.html
http://www.w3.org/People/Berners-Lee/Kids.html
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf
http://pi.cs.man.ac.uk/download/Raspberry_Pi_Education_Manual.pdf
http://pi.cs.man.ac.uk/download/Raspberry_Pi_Education_Manual.pdf
http://pi.cs.man.ac.uk/download/Raspberry_Pi_Education_Manual.pdf

29

Teaching resources
and ideas
Code Club provides detailed plans and resources
for extra-curricular clubs, which might be adapted
for use within the school curriculum. Free
registration required: see www.codeclub.org.uk

New Zealand-based Computer Science (CS)
Unplugged produce an excellent collection of
resources exploring computer science ideas
through classroom-based, rather than computer-
based, activities: see http://csunplugged.org/

Computing at School (CAS) hosts a large resource
bank of plans, resources and activities. CAS is free
to join: see www.computingatschool.org.uk

CAS Primary Master Teachers; for example,
one teacher has shared detailed lesson plans for
computer science and digital literacy topics via his
website at www.code-it.co.uk

CAS has made available a large collection of lesson
plans and other resources through the Digital
Schoolhouse project, based at Langley Grammar
School: see www.digitalschoolhouse.org.uk

Naace (the ICT association) and CAS have
developed joint guidance on the new computing
curriculum: see http://naacecasjointguidance.
wikispaces.com/home

A group of teachers and teacher trainers convened
by the NCTL worked together to curate resources
for initial teacher training for the computing
curriculum, many of which may be useful for CPD
and classroom use: see http://bit.ly/ittcomp

There are excellent resources available for
teaching with MIT’s Scratch programming toolkit,
together with an online support community, on
the ScratchEd site: see http://scratched.media.
mit.edu/

Resources for teaching safe, respectful and
responsible use of technology are widely
available. Good starting points for exploring these
topics are www.childnet.com/teachers-and-
professionals and https://www.thinkuknow.co.uk/
teachers/

RESOURCES

Media

Mainstream television often broadcasts
programmes relevant to topics in computing,
and YouTube has a range of material, from video
tutorials to academic lectures.

BBC Learning produced a collection of clips
relating to computing in real-world contexts, and
companion pieces exploring these in classroom
contexts: see www.bbc.co.uk/programmes/
b01r9tww/clips

The 2008 Royal Institution Christmas Lectures
were given by computer scientist Chris Bishop.
These can be watched at www.richannel.org/
christmas-lectures/2008/2008-chris-bishop

TED has many high-quality 20-minute talks
on computing topics that would be accessible
to primary school pupils: see www.ted.com/
topics/technology and http://ed.ted.com/
lessons?category=technology for a curated
collection of videos for schools.

The first two episodes of the BBC’s Virtual
Revolution are available online. These provide
some excellent background material on the
internet and the web: see www.bbc.co.uk/
virtualrevolution/archive.shtml

Compared to ten years ago, there is now
a wealth of programming environments
designed specifically for primary schools.
You may well have heard of Logo, Scratch
and Kodu, but there many others, each with
a different flavour and focus. You can find
a growing list on the Computing At School
website (www.computingatschool.org.uk/
primary). Remember – programming at
primary is now well-supported, engaging
and fun!

http://www.codeclub.org.uk
http://csunplugged.org/
http://www.computingatschool.org.uk
http://www.code-it.co.uk
http://www.digitalschoolhouse.org.uk
http://naacecasjointguidance.wikispaces.com/home
http://naacecasjointguidance.wikispaces.com/home
http://bit.ly/ittcomp
http://scratched.media.mit.edu/
http://scratched.media.mit.edu/
http://www.childnet.com/teachers-and-professionals
http://www.childnet.com/teachers-and-professionals
https://www.thinkuknow.co.uk/teachers/
https://www.thinkuknow.co.uk/teachers/
http://www.bbc.co.uk/programmes/b01r9tww/clips
http://www.bbc.co.uk/programmes/b01r9tww/clips
http://www.richannel.org/christmas-lectures/2008/2008-chris-bishop
http://www.richannel.org/christmas-lectures/2008/2008-chris-bishop
http://www.ted.com/topics/technology
http://www.ted.com/topics/technology
http://ed.ted.com/lessons?category=technology
http://ed.ted.com/lessons?category=technology
http://www.bbc.co.uk/virtualrevolution/archive.shtml
http://www.bbc.co.uk/virtualrevolution/archive.shtml
http://www.computingatschool.org.uk/primary
http://www.computingatschool.org.uk/primary

30

Support
Computing at School (CAS), as the subject
association for computer science, has been a
key influence on the development of the new
computing curriculum. CAS has a vibrant support
community, including members from industry and
from all phases of education. There’s a dedicated
forum for members in primary education, and
many local and regional events. See
www.computingatschool.org.uk for more
information or to join (free membership).

Naace is the ICT association concerned with
advancing education through the use of
technology, both within and beyond the
computing curriculum. Naace members share a
vision for the role of technology in transforming
learning and teaching. Its members include
teachers, school leaders, advisors and consultants
working within and across all phases of UK
education. Membership requires an annual
subscription but many resources are available
free: see www.naace.co.uk

CAS has worked in collaboration with the British
Computer Society (BCS) to establish a Network
of Teaching Excellence in Computer Science.
The network coordinates and provides training
opportunities for serving and trainee teachers.
The initiative is supported by the DfE, OCR
(examination board), CPHC (Council of Professors
and Heads of Computing), Microsoft and Google.
The programme aims to build a high-quality,
sustainable CPD infrastructure at low cost by
nurturing long-term collaboration between
employers, universities, professional bodies,
schools and teachers: see
www.computingatschool.org.uk/index.php?id=noe

Many local authorities and CLCs (City Learning
Centres) provide support and advice for schools
and teachers on all aspects of the curriculum,
including computing. Contact your local advisors
or consultants for details of events and support in
your area.

Twitter is a great informal source of ideas
and advice once you’ve built up a useful list of
contacts. The CAS Twitter account: @compatsch,
its followers: https://twitter.com/CompAtSch/
followers and those it follows: https://twitter.
com/CompAtSch/following may be helpful in
developing your own personal learning network.

SUPPORT

30

http://www.computingatschool.org.uk
http://www.naace.co.uk
http://www.computingatschool.org.uk/index.php?id=noe
https://twitter.com/CompAtSch/followers
https://twitter.com/CompAtSch/followers
https://twitter.com/CompAtSch/following
https://twitter.com/CompAtSch/following

31

Background
Looking back at the last thirty years or so of
computers in primary schools, there are two quite
distinct threads: learning about computers and
learning with computers. While this publication
and the computing programme of study are
concerned with the former, the latter has a
crucial role in teaching and learning in the third
millennium.

In the earliest days of BBC Micros in primary
schools, creative programmers (many of them
teachers) developed highly engaging educational
software, from simple programs to practise
arithmetic and spelling, through simulations and
rudimentary virtual worlds, to tools to think with
such as Logo. At the same time, a growing number
of pupils were being bought home computers,
mainly as games consoles, and dabbling with
typing in and debugging (correcting) lines of code.

While programming or ‘control’ was an intrinsic
part of the first national curriculum (1990), in
which Information Technology Capability formed
part of ‘Technology’ as a subject, there was
already reference to using software applications
for tasks such as creating databases, word-
processing, presenting work and modelling.

In most schools, for much of the following two
decades, ICT (as the subject became known in

1999) came to be seen as developing pupils’ skills
with a set of office-productivity programs, or their
educational equivalent. This provided much scope
for creative work, some grasp of how information
can be structured and some good problem-solving
activities, but arguably little insight into computer
science.

In recent years, many primary educators have
favoured an ‘embedded’ approach to ICT, in which
ICT capability could be developed through using
computers in the meaning-rich contexts of other
subjects. In their 2008 and 2011 reports, Ofsted
reported positively on the quality of teaching and
achievement in ICT in primary schools in general,
but warned of weaknesses in some aspects of the
ICT curriculum, such as control and data handling.
Ofsted did, however, highlight positive examples
of primary practice, such as game design projects
using Scratch.

The ‘Next Gen’ report, commissioned by the
Department of Culture, Media and Sport on
the state of the UK games and visual effects
industries, recommended that computer science
be brought into the national curriculum as an
essential discipline. Furthermore, in his speech at
the Edinburgh Television Festival in 2011, Google’s
executive chairman Eric Schmidt described himself
as ‘flabbergasted’ that computer science wasn’t
taught as standard, and that England thus risked
throwing away its great ‘computing heritage’.

BBC Micro Computer,
c. 1980s. Copyright
Science and Society
Picture Library, Getty
Images. Editorial
#90766368.

BACKGROUND

32

The Royal Society was commissioned by the UK
computing community to investigate the state of
computing education in schools, publishing their
Shut Down or Restart? report in January 2012.
Their recommendations included a rebranding
of ICT, suggesting a possible split of the subject
into digital literacy, information technology and
computer science, and proposing ‘computing’ as
an umbrella term for the subject as a whole.

With these concerns in mind, the Secretary of
State for Education announced at the 2012 BETT
Show that he would ‘disapply’ the old programme
of study and attainment targets for ICT from
September 2012, allowing schools to develop
their own schemes of work, and giving them the
opportunity to teach programming and other
aspects of computer science. Responding to the
consultation on disapplication, the Secretary
of State announced that ICT was to continue
as a national curriculum subject with a new
programme of study.

BACKGROUND

Subsequently the DfE announced that the British
Computer Society and the Royal Academy of
Engineering would coordinate the drafting
of this new programme of study, drawing on
stakeholders from computing and education. This
draft was subsequently revised by the DfE, with
the subject name changing from ICT to computing.
There were further revisions after public
consultations, with the final version published
in September 2013, ready to take effect in all
maintained schools in September 2014.

Although the change of name, from ICT to
computing, does reflect a change in emphasis,
it’s important to remember that there’s more
to computing than computer science, and
that there’s more to computer science than
programming. Much that we’ve taught in the past
in ICT will fit within the information technology
and digital literacy aspects of the computing
curriculum, and schools that have taught the
‘sequencing instructions’ aspects of the old
programme of study will be able to build on this
foundation as they address the new computer
science content.

Computing At School promotes the teaching
of computing in schools. Our aim is to support
all teachers and all schools, and to develop
excellence in the teaching of computing in
their classrooms. We provide resources,
training, local conferences and workshops,
regional hub meetings, online community
forums and so much more! Computing At
School is free to join. Sign up and find out
about events in your area by visiting us at
www.computingatschool.org.uk/primary.

An eBook version of this guide,
which can be freely shared with
colleagues, is available at:
www.computingatschool.org.uk/primary

This work is licensed under a Creative Commons
Attribution-Non-Commercial-ShareAlike 3.0 Unported Licence.

ISBN 978-1-78339-143-1

9 781783 391431

Naace promotes the appropriate use of
computing to support learning, teaching and
school organisation. Our aim is to support
and challenge all teachers and schools and
also those who provide services to schools.
Naace has existed as an advocate in this
area for 30 years and makes a small charge
for annual membership.

Visit www.naace.co.uk/membership to join
and to find out more about the ICT Quality
Mark and Third Millennium Learning Award.

COMPUTING AT SCHOOL
E D U C AT E • E N G A G E • E N C O U R A G E
In collaboration with BCS, The Chartered Institute for IT

